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Equations of Fluctuating Nonlinear 
Hydrodynamics for Normal Fluids 
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The full set of fluctuating nonlinear hydrodynamic equations for normal fluids 
is derived from the conventional Langevin equations extended to include multi- 
plicative noise. The equations describing the set of conserved variables (the mass 
density p, the momentum density g, the energy density s) agree with those found 
by Morozov for a case of a driving free energy which is a local function of the 
hydrodynamic variables. We show here that if the standard form of the 
hydrodynamic equations is to hold in the absence of noise, then the driving free 
energy must be a local function of g and e, but it may have to be a nonlocal 
function of the mass density. 
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1. I N T R O D U C T I O N  

Fluctuating nonlinear hydrodynamics has long been established as the 
accepted approach for treating nonlinear effects in a wide variety of physi- 
cal systems. The so-called "mode-coupling" nonlinearities have been impor- 
tant in treating the behavior of simple fluids ~'2) and liquid crystalsJ 3~ There 
are important nonlinear effects near a critical point (4~ and also in broken 
symmetry regimes. (5) The appropriate equations are believed (6) to be 
asymptotically exact in the large-distance, long-time limit. It is expected, (7~ 
for example, that the Navier-Stokes equation, including noise, gives a full 
description of macroscopic turbulence in an incompressible fluid. 

Although the full nonlinear equations of motion for a simple fluid in 
the absence of fluctuating forces are well known, ~8~ the corresponding 
problem in the presence of noise has attracted little attention in the 
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60637. 

631 

0022-4715/91/0800-0631506.50/0 �9 1991 Plenum Publishing Corporation 



632 Kimand Mazenko 

literaturefl Landau and Lifshitz first suggested a form for the full set of 
fluctuating hydrodynamic equations for a fluid (ref. 10; also see the last 
chapter of ref. 8). While it was clear that the equations with Gaussian noise 
proposed by Landau and Lifshitz were correct in the linear regime, they left 
unanswered the question of the self-consistency of these equations in the 
nonlinear regime. Van Saarloos eta/. (11) later showed that the assumption 
of simple Gaussian noise is not consistent with thermodynamics and the 
standard constitutive relations. Thus, for example, in the Landau and 
Lifshitz scheme, one cannot simultaneously satisfy thermodynamics and 
Fourier's law. Zubarev and Morozov (12) and Morozov O3) finally showed 
how the inconsistencies described above can be eliminated by generalizing 
the description to include multiplicative noise. 

In this paper we discuss how the development due to Morozov can be 
understood from the point of view of generalized Langevin equations. 
As part of our analysis here we point out that Morozov's analysis is 
restricted to the case of the ~triving free energy that is a local function of 
the fluctuating variables. This means that one cannot, without further 
development, include the standard square-gradient terms in the free energy. 
Our main new result is that only nonlocal and/or gradient terms involving 
the mass density can be incorporated into the driving free energy for a 
simple fluid without changing the basic structure of the equations. The free 
energy must be a local functional of the momentum and energy densities if 
the conventional structure is to be preserved. 

2. G E N E R A L I Z E D  L A N G E V I N  E Q U A T I O N S  

In this section we present the generalized Langevin equation descrip- 
tion 3 including the possibility of multiplicative noise. The set of fields 
~b~(x, t) defined in d spatial dimensions are assumed to obey the Langevin 
equation 

~SF[~] aO (x,t) y 

f day G~UEx, y; 4~] O,~(y, t) (2.1) g + 

where V~[~] is the streaming velocity 

V~[~] = {#;~(x), F[#;]  } (2.2) 

z The fluctuating nonlinear hydrodynamic equations suppressing the energy density was first 
obtained by Enz and Turski/9) 

3 For a standard treatment of the generalized Langevin equations, see Ma and Mazenko. (t41 
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where {A, B} is the Poisson bracket of A and B and F[~b] is the associated 
effective free energy. The matrices F and G in (2.t) are related to the 
dissipative processes in the system and O~(x,  t) is the Gaussian noise, 
which is assumed to obey the second moment 

<~9~(x, t)~9~v(y, t')> = 2ToD~.~v6(x -y  ) 6( t - t ' )  (2.3) 

where T O is the ambient temperature and D~ , ,  v is.a symmetric matrix inde- 
pendent of ~, x, and t and dependent on the bare transport coefficients in 
the system. If the matrix G in (2.1) is dependent on #/, then one has multi- 
plicative noise. 

We now seek the conditions under which the Langevin equation (2.1) 
is compatible with the equilibrium probability distribution 

P [ ~ ]  ~ e F[~p]/T~ (2.4) 

This answer follows from the use of the Fokker-Ptanck description for this 
problem. 

Consider the quantity 

go(t) -- l~ I~ b ( ~ ( x )  - ~ ( x ,  t)) (2.5) 
c~ x 

and its average 

Po(t) = <g0(t)> (2.6) 

We want to construct (2.1) such that in the long-time equilibrium limit 

tlinaoo Po(t) = PEQ[O] = Ne F[Ol/T0 (2.7) 

The time dependence of Po(t) is governed by the generalized Fokker-  
Planck operator. We can construct this quantity by first taking the time 
derivative of Po(t) and using the chain rule for differentiation 

aPo(t) ( / ago(t ) a ~ ( x ,  t ) \  
= _ J 

(2.8) 
at / 

Using (2.1) and the 6-function structure of go(t), we obtain 

at ~ V~[x, 6 ] - Z  y;~]~ P~(t) 

+ ~, f dayG~U[x,y;()](O~,(y,t)go(t)>} (2.9) 
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Evaluation of the correlation of the Gaussian noise with g~(t) follows from 
the use of the identity 

/ 6go(t) \ 
(O~.(y, t) g~(t))=2To~D~..~ ~ \ 60~(y ,  t~) (2.10) 

aY / /  

Again using the chain rule, we find 

,d 6 / . .6~,~(z,  0 \  
(0~(y, t) go(t)) = -2To ~ D~u,~. ~ f a z 6~(z) \ kgo(t ) 60~(z, t~) (2.11) 

cr ,~,v  ] /  

As discussed by Ma and Mazenko, (14) the derivative of the field with 
respect to the noise at equal times follows from the equation of motion 
(2.1) as 

3 ~ ( z ,  t) 1 
GV~q-z, y; ~]  (2.12) 

60~(y, t) 2 
and 

(O,,(y,  t) gr = -To E D,,,~7 f daz ~ { Gv~[z, Y; P0(t)} 
~ ~v'~t-, (2.13) 

The equation of motion for Po(t) can then be written in the form 

OPt(t) 
Ot -D~Po(t) (2.14) 

where the Fokker-Planck operator is given by 

D~ 
B &b~(y) 

6 G~~ y; ~b]} - To E f daY daz G"U[x, y; ~b] D~ ,~  6~(z---~ 
/~u, ay 

The condition for equilibrium is given by 

Do e -- F[q) ] /To = 0 

-To  2 f daydazG~U[x,Y;(~]D~,,~, 
/~# ,a ,7  " 

, } x ~ GYm'[z, y; ~b] e -F[O]/T~ = 0 

oOAzJ 

o r  

6F 
6~b~(y) 

(2.15) 

(2.16) 

(2.17) 
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We restrict our analysis here to the case where 
independent conditions: 

(i) The divergence condition 

this reduces to three 

3 
E f o? e-e~ol/r~ =0 

(ii) The locality condition 

(2.18) 

~ f d~ 6~(z) G~,l-z, x; r = 0 (2.19) 
v 

(iii) The detailed balance condition 

F~e[x, y; ~b] = ~ f ddz G~~ z; ~b] D~7.,vG~VU[y, z; ~b] (2.20) 
o 'y ,  # v  

We can make a few general comments here. The divergence condition 
can be rewritten in the form 

Z f d~x ~ ({~b~(x), F[~b] } e -FE~2/r~ 6~(x) 

f 6 = e rE~l/ro Z dax ~ {~b~(x), F[~b] } 

6F[O] 1 e-FEar~r~ (2.21) -- ~ f ddx {~b~(x), F[~b] } &b~(x) To 

But 

6Fish] 6Fish] 
= Z f ddx ddY {~b~(x), ~b~(y)} 3~b,(x) &b~(y) 

= 0  (2.22) 

due to the antisymmetry of the Poisson brackets. The divergence condition 
reduces then to 
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In general this is not zero and depends on the nature of the Poisson 
brackets. 

For most applications one can assume that the matrix elements G are 
independent of ~b and the locality condition is trivially satisfied. When one 
includes the energy variable this is no longer possible, as we shall see, and 
condition (ii) becomes more nontrivial. 

The detailed balance condition shows that F is symmetric since, from 
(2.3), D is symmetric, 

F~Ex,  y; ~b] = F ~ [ y ,  x; ~b] (2.24) 

3. S INGLE-VARIABLE CASE 

We can gain some appreciation for the general case by considering the 
simple case of a single conserved field, the energy density e(x, t), which is 
driven by a free energy 

F = E -  ToS=f  dax Ee(x)-  Tos(X)] (3.1) 

where E is the total energy, S is the entropy, and s(x) is the entropy 
density. 

The local temperature is defined by 

1 fig 
T(x) fie(x) (3.2) 

The constitutive relation associated with the conserved energy is Fourier's 
law 

J~ = -2oVx T(x) (3.3) 

where J ,  is the energy current in the absence of noise and 2o is the "bare" 
thermal conductivity. 

In this case of a single scalar field the streaming velocity is zero and 
the Langevin equation (2.1) takes the form 

ae(x, t) 6F 
- f day F[x,  y; e-I oa{y)-;-';-~' ' + ~ i ddy Gi[x' y; e'] Oi(y, t) (3.4) a ~  T 

and the detailed balance condition becomes 

rEx, y; e3 = E I daZ GiE"' z; e3 D~ z; e3 
,2 

(3.5) 
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Since the energy is conserved, the simplest choice for the quantity G 

Gi[x, Z; g ]  i = V,, I f (e)  3(x - z)] (3.6) 

F [ x , y ; e ] = ~  i J I DO6(x_ 6 F ]  /j VxVy f2(e(x)) Y) 

The energy current in the absence of noise is given then by 

J~(x) = E f dayVJy[f2(e(x))D~ - 
J 

f (~(x))DuV x 1 -  
J 

f2(~(x)) o j 
= DuVxT(X ) 

We have a reconciliation with Fourier's law (3.3) if 

and 

6F 
Be(y) 

(3.7) 

(3.8) 

f(~(x))  = T(x) (3.10) 

Thus thermodynamics and Fourier's law demand that the noise be multi- 
plicative, 

Gi[x, y; e] = Vix [ T(x) 3(x - y)] (3.11 ) 

and the Langevin equation takes the form 

2 i Oe(x, t) _ 2oVx T(x, t) + ~ Vx[T(x, t) Oi(x, t)] (3.12) 
8t 

The locality condition (2.19) then takes the form 

6 

= f d a x ~ V i x 6 ( X - y  ) (3.13) 
oetx) 

D~ = ~oo 6 ij (3.9) 
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We have called (2.19) the locality condition because, if S(e) is a local 
function of e (no gradient terms), then T is also a local function of e and 

fiT(y) 0T(y) 

fie(x) Be(y) 
- - f i ( x - y )  (3.14) 

and 

f dax ~ Gi[x, y; e] = 0T(y)~3e(y) J ~ dax fi(x - y) V,,fi(x - y) = 0 (3.15) 

The importance of this last result has been emphasized by Morozov. 4 If S 
is a function of the gradients of e, then (2.19) is not generally satisfied. In 
that case one can guarantee equilibration only by adding an additional 
term to the right-hand side of (2.1) which just cancels the term associated 
with (2.19) in (2.17). Such terms change the basic structure of the con- 
stitutive relation. 

We might expect the multiplicative nonlinearity in the Langevin equa- 
tion (3.12) to contribute to the renormalization of the thermal conductivity. 
But in turns out that this is not the case. We can easily show using the 
Fokker-Planck developmen(14) that the Fourier-Laplace transform of the 
energy correlation function has the usual pole structure in the low- 
frequency, long-wavelength limit: 

C(q, z) poCv z + iDrq 2 (3.16) 

where P0 is the ambient mass density, c v the specific heat, and the 
diffusivity D r can be written as 

2R 2o(fiT(q ) f i e ( -q ) )  
DT-- -- lim (3.17) 

poCv q~O ( f ie(q)  fi/;( -- q) ) 

with 2R being the renormalized thermal conductivity. (3.17) becomes trivial 
if we use the identity in the canonical ensemble 

~ ( A )  1 
OT o Tg (fiA fiE) (3.18) 

4While the meaning of the integral in (3.15) is ambiguous in the continuum description, 
Morozov shows that in a rigorous treatment of the theory, defined on a lattice, the integral 
in (3.15) vanishes. 
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By setting, in turn, A = T(x) and e(x), one obtains 

lim (fiT(q) fie(-q)) = (fiT(x) fiE) = To 2 
q ~ O  

lim ( fie(q) fie(--q) ) = ( fie fiE) = Tg /--Too (E)  
q - ~ 0  

and (3.17) reduces to 

=T~pocv 
(3.19) 

2R = 20 (3.20) 

4. NORMAL FLUID 

4.1. Equilibrium Structure 

The first step in applying the development in Section 2 to a fluid is to 
specify the set of fields 0~(x) and the associated free energy F [0 ] .  From a 
dynamic point Of view the appropriate set of independent variables are the 
conserved densities 0,(x)  = (p(x), g(x), e(x)), where p is the mass density, 
g the momentum density, and e the energy density. In the case of a 
microcanonical ensemble the associated free energy is F [ O ] = - S [ 0 ] ,  
where S is the entropy. If the entire system is in contact with a heat bath 
with a uniform temperature To, then the appropriate free energy is t h e  
Helmholtz free energy 

F[O] = E -  ToS[Ip] (4.1) 

where 

E = f dax e(x) (4.2) 

is the total energy. We shall assume throughout that we are working in the 
canonical ensemble where (4.1) gives the free energy driving the Langevin 
equations. 

From a thermodynamic point of view it is usually preferable to work 
in the representation where the independent variables are given by the set 
r  where s(x) is the entropy density and the 
associated potential is now the energy E. In particular, if E is a function of 
r we can define the local intensive variables 

fiE 
G~(x)-fir  ~ (4.3) 

822/64/3 -4-11 
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where T(x) is the local temperature, 

fE 
Gg,(X) = fgi(x)  Vi(x) (4.5) 

where Vi(x) is the local velocity, and 

fie 
Gp(x) = 8p(x) = #(x) (4.6) 

where #(x) is the local chemical potential. The local pressure is then 
defined by the local version of the Euler relation 

P(x) = Y  ~ ( x )  C 4 x ) - ~ ( x )  
C~ 

f E  
= E ~(~) f~Tx) ~(x) 

= p(x)/~(x) + g(x) �9 V(x) + s(x) T(x) - g(x) (4.7) 

There is a key point to be made at this stage. If E is a nonlocal func- 
tion of the ~b~, i.e., contains gradient terms, then the entropy and energy 
representations will give different definitions of the intensive variables. In 
the entropy representation the intensive variables are defined by 

~4x)  = -  

In a purely thermodynamic context 

C~(x) = 

and 
t 

G , ( x ) -  - -  G~(x) (4.10) 
T(x) 

6S 

1 1 
(4.9) 

T ( x ) -  G,(x) 

for c~r or s. When gradient terms are included, (4.9) and (4.10) are 
violated by terms proportional to the gradients. We will return to this 
point below. 

(4.8) 

8E 
Gs(x) = 6s(x) = T(x) (4.4) 



Fluctuating Nonlinear Hydrodynamics 641 

4.2. Poisson Brackets  

A key ingredient in specifying the Langevin equation (2.1) is the set of 
Poisson brackets among the variables ~ ( x ) .  In the case of a normal fluid 
we start with the set ~b~(x) = {p(x), g(x), s(x)} and use the results for this 
set to construct the Poisson brackets for the set of~ variables ~,~(x)= 
{p(x), g(x), ~(x)}. 

It is straightforward to show, starting from the microscopic definitions 
of the density and the momentum density, that p and g satisfy the set of 
Poisson brackets 

{p(x), g,(y)} = -VSx [6 (x -y )  p(x)]  (4.11) 

{gs(x), p(y)} = Wy[6(x - y) p(x)]  (4.12) 

(gi(x), gj(y)} = - V ~ [ - 6 ( x - y ) g i ( x ) ]  + V ' y [ 6 ( x - y ) g j ( x ) ]  (4.13) 

{p(x), p(y)} = 0  (4.14) 

It is assumed 5 that the entropy density transforms as a scalar under spatial 
translations and therefore has the same Poisson bracket structure as the 
mass density: 

{ g,(x), s(y)} = ViyE~(x - -  y) s(x)] (4.15) 

{p(x), s(y)} = 0 (4.16) 

{s(x), s(y)} = 0 (4.17) 

The Poisson bracket relations for the set of variables ~b~ can be written in 
the compact form 

{~(x) ,  ~bp(y)} = 6,,g, W y [ 6 ( x - y )  ~br - 5~,g,V~,[-8(x-y) ~b~(x)] (4.18) 

Given the Poisson brackets for the ~b~, one can construct the Poisson 
brackets for the ~ using 

{~b~(x), ~ ( y ) }  = Z f ddx' ddY ' 6~b~(x) &p,(y) {~b~(x), ~bv(y)} (4.19) 
,,v 6~bu(x) 6~b~(y) 

Inserting (4.18) into (4.19) and doing the integration over the 6-function 
gives 

{~ (x ) ,  ~ , (y)}  : Z f ddx' F6~'(Y) V ~ 5 ~ ( x )  r 

51/ /~(x)  
' ~'&P'(Y) ~b~(x)'~] (4.20) ~v(x) Vx ~,k,(x) 3J 

5 A derivation of Poisson brackets for the set r = {p, g, s} from the point of view of the 
symmetry is given by Dzyaloshinskii and Volovick. (:5) 
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For r in the subset {p, g} these clearly reduce to their previous form. Thus 
we are left with the Poisson brackets for the energy variable. Unless we 
make some statements about the locality of the energy, we can make little 
progress. If we appeal to the principle of Galilean invariance, then we can 
conclude 6 that 

--d g 2(x) +fdaxu(x)j E=fa x2--p-~) (4.21) 

where u is a functional only of p and s, and 

& ( x )  g , ( x )  
- -  6 ( x  - y )  - V , ( x )  6 ( x  - -  y )  ( 4 . 2 2 )  

ag/(y) p(x) 

We have then 

{p(x), e(y)} = - ~ VixE6(x - y) gi(x)]  (4.23) 
i 

&(Y) ~V~[Vj(x)g~(x)6(x-y)] (4.24) {g/ix), e(y)} = -- ~ Cv(xlV'~, ~5~b~(x) j 

and 

& ( x )  
{e(x), ~(y)} = - Z  V/(x) Ov(x)V / &(Y) + ~  V,(y)Ov(y)Viy &b~(y) ,,~ x & ( x )  . 

(4.25) 

Further assumptions on the structure of e(x) are required to go 
further. Let us assume that ~ is a local functional of r  and Vixen(x) 
only. Then 

& ( x )  & ( x )  & ( x )  , 
Jr Or j (x  - y) + ~ ~(Vjx-~-(x)) V~6(x - y) (4.26) 

Then, for example, if the pressure is given by 

6E 
P(x) = ~ ~b~(x) 6r e(x) (4.27) 

one obtains 

i _ 6 E  ~ (~ &(x) V~r (4.28) VxP(X) -- E ~(x)V/x  ~e , (x  ) . VJ 0 ( V j ~ ( x ) )  / 

6 A semimicroscopic derivation of the kinetic part of (4.21) is given by Langer and Turski. (16) 
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Using this result, one can evaluate 

~b~(x)W 6t(y) 
x 6~(x)  

- ~ ~(,,)v~6(,,  Z V~A,j(,,) - Vx[P(x ) 6(x - y)] + - y) + 8(x - y) 
J 

where 

(4.29) 

A ~ ( x ) = ~  88(x) 
~(Vj~(x)) V i ~ ( x )  (4.30) 

This result, in turn, gives the final expressions for the Poisson brackets 

and 

{ g~(x), e(y)} = -Vix[P(x) 3(x - y)] - ~ V~[ Vj(x) g,(x) 3(x - y)] 
J 

+ WyEe(x)6(x- y)] - 6 ( x - y )  ~ V{Au(x ) (4.31) 
] 

{~(x), e(y)}  = - ~ Vix{ V , (x ) [ e (x )  + P ( x ) ]  6(x - y)}  
i 

+ ~V~y{Vi(y)[e(y)+P(y)] 6 ( x - y ) }  (4.32) 
i 

4.3. Streaming Velocit ies 

The streaming velocities V~[tp] which go into the Langevin equation 
are given by 

V~[0] = {0~(x), F} 

= {0~(x), E} - To{0,(x), S} (4.33) 

We first note that 

since 

C d d ~,~(x) { 0 ~ ( x ) , S } = Z j  Y ~ { ~ b , ( y ) , S } = 0  (4.34) 

{~b~(y), S} = 0 (4.35) 
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V=[6] = (O=(x), E} (4.36) 

We find immediately by integrating the {~(x) ,  e(y)} over y that 

Vp(x) = -Vx"  g(x) (4.37) 

j R Vg,(x) = - ~ Vxau(x ) (4.38) 
J 

V~(x) = - V "  J~(x) (4.39) 

where the reversible part of the stress tensor is given by 

a~ = P6o. + pViVj + d~j (4.40) 

and the reversible part of the energy current is given by 

Jy  = V(e + P) (4.41) 

streaming velocity must satisfy the "divergence" This form of the 
condition (2.23), 

f ddx 6 ~  {~0~(x), F} = 0 (4.42) 
o~ 

The first term in the sum is zero, 

- f daX 6p-~(Vx 'g(x) )=O (4.43) 

Since e is a local function of g, d q and P are independent of g. This follows 
for d~j directly from its definition (4.30) and (4.21). Using (4.21) in (4.27), 
one can rewrite the pressure in the form 

3U 
P(x) = y' ~b~(x) - -  u(x) (4.45) 

= 6 G ( x )  

where U =  S dax u(x). It is clear from (4.45) that P(x) is independent of g 
and the first term in (4.44) reduces to 

~5 j R 

k ij 5gi[ X) Oe[X]  

since g and p are independent variables. This leaves 

(4.44) 
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[gi(x) gj(x)] 

6 Vj [gi(Y) &(Y) 6 ( x -  y)]  
ij  

_ 6(x - y) g , (y)]  ,_,j ~, da x 6_(x - y) &(y) + 6,j - y) = .. f day P(T) P-~i ] Vx~ 
q 

= ~ f a y . ~ 7  &(Y) (d + l ) f dax 6(x_ y) V.ix6(X_ y) (4.46) 

The last integral in (4.46) is the same as the one that appears in (3.15), 
which vanishes, 

f dax 6(x - y) V~6(x - y) = 0 (4.47) 

The divergence condition (4.44) therefore reduces to 

f dax &-~ Vx" f~g(x) D(x)+ P(x)3} (4.48) 

The first term is seen to be zero by following essentially the same analysis 
used to obtain (4.46). One is left then with 

[g(x) ] f ddxaT~ Vx'kp(x) P(x) =0 (4.49) 

This can be rewritten in the form 

g(Y) 6P(y) P 

| dax day V~6(x - y) = 0 
d p(y) 6e(x) 

(4.50) 

Since P = P(p, s), we can write 

6P(y) 3-" 6P(y) &b,(z) 
&(x) = f daz ~ &b~(z) &(x) 

cSP(y) 6s(z) P 

= | daz 
.I &(z) &(x) (4.51) 

If e and u local functions of s, then 

6s(y) Os(x) 
- - 6 ( x - z )  (4.52) 

&(x) &(x) 
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Since P is also a local function of s, via (4.27), we obtain 

6P(y) 8P(y) 6s(x) 
6 ~ ( x ) - f  ddz-~s(-~ 6(Y-- Z) 6--e-~ 6 ( x -  z) 

OP(y) ~s(y) 
- -  6(x- y) (4.53) 

Os(y) c~e(y) 

Inserting (4.53) into (4.50), one finds, using (4.47), that the identity is 
satisfied. Thus we satisfy the divergence condition if E has the form (4.21) 
and u is a local function of s. Thus E can have nonlocal contributions only 
via its depentence on the mass density p. 

These locality requirements reflect back on the results of Section 4.1. 
Reconsider the equations defining the intensive variables in the entropy 
representation (4.8). One can then use standard thermodynamic manipula- 
tions in treating derivatives with respect to g and e to obtain 

and 

6S 1 
G=(x) (4.54) 

6~(x) T(x)  

6S 1 
~=,(x) 6g;(x) v,-~ (4.551 

Since e may not be local in p, one cannot conclude that Gp(x)= 
- ~ ( x ) / ~ ( x ) .  

4.4. D iss ipat ive  C o e f f i c i e n t s  

The dissipative coefficients and the noise are specified in (2.1) by 
giving the matrix G~"~Ex, y; ~]  and the matrix D~,,v. In the case of a 
simple fluid where all of the variables ~,(x) are conserved, the most local 
form we can choose for G is given by 

i c~a7 6"~ Y; ~3 = ~ V x [ f ,  ( ~ ( x ) ) 6 ( x - y ) ]  (4.56) 

Inserting this result in (2.20) gives 

F=~[x, Y; ~3 = ~ ~ ~ V~Vr f~uv(~(x)) D~7,,v6(x - Y)] 
i , j  ~ , 7  I~, v 

The locality condition (2.19) then reduces to 

6 , = , ; ~  g '6 fT~  0 

(4.57) 
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If f~7(x)  is a local function of the ~p~(x), then 

6fT~ c~f~"~ (y) 
- - 6 ( x - y )  (4.58) 

and (4.57) is satisfied through the use of (4.58) and (4.47). 
A key point here is that there is no dissipative coefficient associated 

with the mass density, so 

f;~7 = 0 (4.59) 

and the locality conditions therefore require only that f~o7 be a local ai 
function of g and e. As will be demonstrated below, the choice which 
leads to the standard constituitive relations is 

f~a~'(x)-= 67'gi[ T (x )  ]1/2 { 6e'~[6c~'gj'+" [ T(x)  ]I/2 6~'e-l "k- 6e'e ~k 6~'gk Vk(X)} 
(4.60) 

Since the entropy is assumed to be a local function of e and g, so also are 
the derivatives of the entropy with respect to e and g, T-~ and - T - ~ V ,  
respectively, local functions of g and e. Thus, the choice that S be a local 
function of g and e allows one to satisfy both the divergence and locality 
conditions. 

Finally the dissipative matrix D~r,~ are 

and 

- r//z kz ( 4 . 6 1 )  Dgi gj, gk gz -- To 

4o 6o . ( 4 . 6 2 )  
Dg,~, gje -- To 

where r/~,k t is the usual viscosity matrix for an isotropic system 

rlu, kt = q(6ik3j~ + 6it6jk - �89 + ~6e6kt  (4.63) 

with t /and ~ the shear and bulk viscosities, and 4o in (4.62) is the thermal 
conductivity. 

Using (4.60)-(4.62) in (2.20), one easily finds the kinetic coefficients: 

Fg'gJ[x, y; ~ ] = ~ V~Vly I~lik, jt T(--~ 6(x- y) 1 
k,l 10 

(4.64) 
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k, [  x r(x) ] 
v~'~[x,Y;O] = Z v ~ v ,  q,~,j, vj( ) - ~ - o  6 ( x - y )  (4.65) 

j , k , l  

+ ~V~Vty q,k, jzVi(x) vjtx)--~7-o 6 ( x - y  ) (4.66) 
~jm 

It is useful to see explicitly how these results reproduce the expected 
constitutive relations. One has first from the momentum equation 

y,V~a~k(x)=~fdayFgia[x ' Y; ~] 6__._~F 
k /~ 6O/~(y) 

=f ddy rg'~,[x,y;O]~+r~"[x,y;~] a-7~ 

Using the thermodynamic relations 

6F T~ Vj(y) 
6gj (y) T(y) 

5F To 
&(y) T(y) 

(4.67) 

(4.68) 

(4.69) 

(4.67) becomes 

k 
Vxaik(X) 

k 

[- T(x) I To Vj(y) =2 y ddy V:Vly L~lik, jl---~o ~5(x-- Y) - ~  
j k l  ' 

+y. ldayVkxWyLqik,j, Vo(x)__f_o_o 6(X_y) l To 
j k l '  

k - - _ _  
= - Y~ vx,7,~,j, T(x)V'x T(x) 

j k l  

(4.70) 

and one can identify 

l ~ik(x) = - ~ ,ik, j, Vx V/x) 
il 

as expected. The energy equation gives 

(4.71) 
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Vx" J~(x) = Z f daY F~a[ x, Y; ~b] 6___~F 
a 60a(Y) 

= E f ddyV~Vly r/ik'"V'(x) 6(x--y) T--~ Vy(y) 
ikjl" 

+ ~tfddy V:V'y [rlikd, Vi(x) Vj(x)___~o 6(xT(x) --y)](1-T---~)) 

I-4 V ~ x )  
+fdayVx 'VY[_ ~ To 6 ( x - Y ) ] ( 1 - T ~ ) )  

and one has immediately that 

J~(x) = - y~ ,.~.j, v;(x)  V'x Vj(x) - 2oV~x T(x) 
kjl 

(4.72) 

and one recovers Fourier's law when V = 0. 

4.5. S u m m a r y  for  a Normal  Fluid 

Putting all of these results together, one obtains the equations of 
nonlinear fluctuating hydrodynamics for a normal fluid: 

DO 
---z-~ = - V .  g (4.73) 
0t 

Ot j . jkl 

+ E VJ(xfT 00) (4.74) 
J 

0e 
0t = - Z Vi[ Vi(e + P)] + 2oVZT+ Z ~ij, kl v i (  VJ v k V ' )  

i ijkl 

+ }-'. V~(x/-T VjOo)+~Vi(T~i) (4.75) 
i,j i 
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where the Gaussian noise terms satisfy second moments 

(0~(x, t) 0kt(Y, t ' ) )  = 2t/~,k~6(x - y )  6( t -  t') (4.76) 
and 

(~(x ,  t) ~j(y, t ' ) )  = 2206~(x - y) 6( t -  t') (4.77) 

The various ingredients in (4.73)-(4.75) can be obtained from the energy 
functional assumed to be of the form (4.21) and local in e. The pressure is 
given by (4.45). The quantity A U is defined by (4.30) and indicates that we 
have assumed that E is nonlocal with respect to the mass density and 
therefore takes the form 

0k(x) 
A~ 6(VJp(x) ) V~p(x) (4.78) 

where e=~(s, g, p, Vp). Finally, the local velocity and temperature are 
given by (4.5) and (4.4). 

Neglecting the noise terms and the term Au, one regains the equations 
of Landau and LifshitzJ 8) Neglecting all gradient terms, one returns to the 
equations first obtained by Morozov. (13) 

4.6. The Construction of the Energy Functional 

In this section, we give an example of the type of free energy functional 
which is of the form (4.21) and which may be useful in the study of glassy 
dynamics and solidification. 

We begin with the well-known result for the ideal gas contribution to 
the entropy given by 

, m , u0 ,4 9, 

where Uo is the ambient internal energy density. We can then obtain from 
(4.79) the ideal gas part of the internal energy density Uideal(X) in terms of 
p and s of the form 

Uid,al(X) = UO exp([Zms(x)/dp(x)] + (1 + 2/d){ln[p(x)/po] - 1 }) 

If we then add to uia~,~(x) an "interaction" contribution f(p, Vp) to the 
internal energy density, we obtain the free energy functional, 

g2(x) + f dax(uoexp ~ " s(x) E =  dax 
o ~ (�89 
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It is then straightforward to show that the intensive variables are given by 

T = 2mUideal/d p = 2m(e - g2 /2p  - f)/dp (4.81 ) 

and 

where h is defined by 

(4.82) 

~f ~(vip) = (vip) h(p, Vp) (4.83) 

These results then completely specify the hydrodynamic equations in terms 
of p, g, and e. 

5. CONCLUSIONS 

We have shown that the development due to Zubarev and 
Morozov (a2) and Morozov (x3) can be incorporated into a set of conven- 
tional nonlinear Langevin equations with multiplicative noise. In the 
process, we also have shown that in order for the multiplicative noise to 
reconcile both thermodynamics and phenomenological laws for the 
dissipative fluxes, the driving free energy should be a local function of the 
momentum and energy variables (no gradient terms) and can contain 
nonlocal and/or gradient terms of the mass density only. 
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